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NORMAL BASES VIA GENERAL GAUSS PERIODS 

SANDRA FEISEL, JOACHIM VON ZUR GATHEN, AND M. AMIN SHOKROLLAHI 

ABSTRACT. Gauss periods have been used successfully as a tool for construct- 
ing normal bases in finite fields. Starting from a primitive rth root of unity, 
one obtains under certain conditions a normal basis for IFqn over Fq, where r is 
a prime and nk = r - 1 for some integer k. We generalize this construction by 
allowing arbitrary integers r with nk = o(r), and find in many cases smaller 
values of k than is possible with the previously known approach. 

1. INTRODUCTION 

Let Fq be a finite field with q elements. A basis of the vector space Fqn over 
Fq of the form (a, aq, . a, aqn) is a normal basis, and in this case a is a normal 
element in Fqn over Fq. 

Gauss periods have been used to construct normal bases in the following way. 
Let n, k > 1 be integers such that r = nk + 1 is a prime, and let q be a prime 
power with gcd(q, r) = 1. Then the group Z' of units modulo r is cyclic and has 
nk elements, and since qnk 1 mod r, r divides qnk 1 #F'n k. Hence there 
exists a primitive rth root of unity / c Fqnk, and O3a is well defined for any a c 7Z. 
Let /C < Z' be the unique subgroup of the cyclic group Z' with #/C = k, and 

(1) OlZa = E . 

Then a is called a prime Gauss period of type (n, k) over Fq. 
In this situation we have a c Fqn, and a is a normal element of Fqn over Fq if 

and only if gcd(e, n) = 1, where e is the index of q modulo r. 
Starting with [8], this construction has been used to find normal bases, in par- 

ticular the so-called optimal normal bases; see also [5]. Optimal normal bases using 
Gauss periods have been generalized in [1] (for q = 2), and studied in [10], [7], 
Chapter 5, and [3]. The latter paper reconciles asymptotically fast arithmetic with 
normal bases; the cost for arithmetic in Fqr then depends not only on q and n but 
also on k. So it is important to find a value for k that is as small as possible. This 
leads to the following definition: 
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Definition 1.1. A pair (n, k) is called a prime Gauss pair over Fq if and only if 
the prime Gauss period of type (n, k) is a normal element in Fqn over Fq. We define 

min k (n, k) is a prime Gauss pair over iFq, if such a 

Kp (q, n) k exists, 
00 oo if no such k exists. 

(The subscript p stands for "prime") . Unfortunately, ip (q, n) is not always small, 
and in fact it is sometimes not finite. 

Fact 1.2. (Wassermann [10], Theorem 3.3.4.) Let p = char(Fq), q = ptm and 
n c N positive. Then Kp(q, n) < o0 if and only if the following conditions hold: 

(i) gcd(m, n) = 1, 
(ii) 4p t n or (2p t n and p-1 mod 4). 

Gauss indicated in Article 356 of his Disquisitiones Arithmeticae that the con- 
struction of Gauss periods might be extended from primes r to arbitrary positive 
integers. He says: "Ceterum observamus [ ... ] haecce theoremata salva vel potius 
aucta elegantia sua etiam ad valores quosvis compositos ipsius n extendi posse: sed 
de his rebus, quae altioris sunt indaginis, hoc loco tacere earumque considerationem 
ad aliam occasionem nobis reservare oportet. ̀1 

It was a well-known habit of Gauss to keep his results to himself rather than to 
publish them, often to the dismay of his contemporaries who would visit him to 
explain their great new result only to have Gauss pull it from a drawer. We could 
not find in the literature "another occasion" where he published his "more elegant 
theorems". 

In this paper we present a generalization of Gauss periods which yields better 
results in the following sense, for some q: 

* There are Gauss pairs (n, k) in the new sense with k < 'p(q, nr). Some exam- 
ples are given in Table 2. 

* There are Gauss pairs (n, k) in the new sense where Kp(q, n) = oo; see Table 1. 

In Section 2 we generalize the definition of a Gauss period in finite fields and state 
our Main Theorem which gives a necessary and sufficient condition for a Gauss 
period to be normal. Sections 3 through 5 contain the proof of the Main Theorem. 
In Section 3 we derive normal bases in finite fields from global normal bases in 
cyclotomic fields. In Section 4 we exhibit normal p-integral elements in cyclotomic 
fields and in Section 5 we prove our Main Theorem. In Section 6 we discuss some 
experimental results showing the scope of improvement over the previous construc- 
tion. 

Our Main Theorem is a statement about a construction in finite fields. The 
necessity of the condition can be proven by working in finite fields alone, but we 
do not have this type of proof for its sufficiency; rather, we make use of global 
considerations in certain algebraic number fields. 

1Besides, we observe that these theorems can with undiminished or even greater elegance be 
extended to arbitrary composite integers n; but about these matters, which are at a higher level 
of research, it is appropriate to be silent in this place and to reserve their discussion to another 
occasion. [Gauss' n corresponds to our r as above.] 
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2. GENERALIZATION OF GAUSS PERIODS 

The construction of the Introduction, with a prime r, generalizes as follows: 
For a prime f and a nonzero integer r we define ve(r) as the maximum number 

f such that hf divides r. The squarefree part of an integer r is the product of all 
primes h such that vle(r) = 1. 

Definition 2.1. Let n, k, r c N be positive integers such that (p(r) = nk. Write r 
as r = r1r2 where r1 is the squarefree part of r, and set 

g(X) = xr2 11 S x E c[X] 

flr2 1<i<ve(r2) 

Let q be a prime power with gcd(q,r) = 1, let 3 c Fqnk be a primitive rth root of 
unity, and IC a subgroup of Z' of order k. The Gauss period of type (n, IC) over 
Fq is defined as 

a 
g 

pa:). 

aErC 

The parameter r on which a also depends is not made explicit. 

If r is squarefree, i.e., r2 = 1 in the above notation, then g(x) = x and now 
a = ZaE/C 3a is called a squarefree Gauss period and is of the same form as the 
prime Gauss period in (1). For a prime r the above definition is thus equivalent to 
the one in (1). In this case the group Z' is cyclic, hence has for each divisor of 
(p(r) = r - 1 exactly one subgroup of that order. 

Example 2.2. Let q = 2, n = 20, k = 2, r = 55. Then (r) = 40 = 2 20 = k n. 
The group Z' has three subgroups of order k, namely 

I, = {1,21}, C2 = {1,54}, and /C3 {1,34}. 

As we will see in Example 6.2, the resulting Gauss periods are not equivalent. In 
fact, only the first two of them yield a normal basis in F220 over F2. 

The following is the main result of this paper and will be proved in Section 5. 

Main Theorem. A Gauss period of type (n, IC) is a normal element of Fqn over 
Fq if and only if (q, /C) = -r 

We can use this theorem to construct normal elements in finite fields, as is shown 
in the following examples. 

Example 2.3. (1) Let 13 be a primitive 9th root of unity over F2. We apply the 
theorem with q = 2, r = 9, and n = 6. Since (2) = 2<, the element '3 + 33 is 
a normal element of F26 over F2- 

(2) Let r = 25. The order of 3 modulo 25 equals 20 = p(25). Let IC be the 
subgroup of order two of Z' , i.e., IK{1, -1}. Then (3, IC) = 2Z5. Applying 
the theorem with n = 10 and q = 3 shows that 3+3-1 +3 5 +3 -5 is a normal 
element of F31o over F3, if /3 E F320 is a primitive 25th root of unity. 

One might consider applying (1) for an arbitrary r. In Theorem 5.2 we show 
that in order to yield a normal element, r then has to be squarefree. 

The necessity of the condition given in the Main Theorem is easy to prove. 

Lemma 2.4. With the notation of Definition 2.1, we have a C FqS, where s is the 
multiplicative order of q modulo /C. In particular, if (q, /C) =& Zx, then a is not 
normal. 
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Proof. Our assumptions imply that (qS mod r) C IC. For the first claim, it is 
sufficient to show aq` = a: 

q.9 
qS (g(pa)) Ea E 

aE/C aE/C aECC 

by the above. The order s of q modulo K equals #(q, KI)/k, since (q, IC) is a disjoint 
union of q2IC for 0 < i < s. In particular, if (q, IC) =& Zx, then s is less than n, and 
a is not normal. E 

The next lemma says that although a may depend on the choice of : as a 
primitive rth root of unity, the normal basis generated by a is independent up to 
a cyclic shift. 

Lemma 2.5. Let /3, /3CFqnk be two primitive rth roots of unity, and a, a' C Fqn 

the corresponding Gauss periods. If (q, &) = Z4, then a and a' are conjugate over 
Fq. 

Proof. There exists an s with 1 < s < m, gcd(s,m) = 1, and 3' =3S* Since 
(q, C) = Zx, there exists a j C {0, ... , n- 1} with s C qiKC. Thus 

a' Z d/ga) E (3as) 
= (3aqJ) =(E g(aa)) aqi 

aEtC aEtC aEtC aECC 

and a and a/ are conjugate. E 

For the proof of the Main Theorem we have to leave in the next sections the 
realm of finite fields and work in algebraic number fields. This is, of course, Gauss' 
original setting for his periods. 

3. MODULAR NORMAL BASES FROM GLOBAL NORMAL BASES 

In this section we discuss conditions under which reductions modulo prime ideals 
of normal elements in number fields (global normal elements) yield normal elements 
in finite fields (modular normal elements). In the sequel we will use several well- 
known results from algebraic number theory. Proofs of these results can be found 
in the first chapter of Lang's book [6]. 

Let L be a Galois extension of Q with Galois group G, and let a C L be a 
normal element, i.e., the Galois conjugates of a generate L as a vector space over 
Q. Let OL denote the ring of integers of L. For a rational prime p the ideal POL 

decomposes into a product (PI ... pr)e, where each pi is a prime ideal of OL and 
has the same residue class degree f = f (pi/p), i.e., #(OL/Pi) = pf. Furthermore, 
efr = [L: Q]. The prime p is called unramified if e = 1, and it is called inert if 
e = r = 1, i.e., if f = [L : Q]. 

We fix a prime divisor p of POL. (We call p a prime divisor of p in the sequel.) 
We would like to obtain conditions under which (oa mod p) is a normal element of 
Fpf. We will first study when the set {a9 mod p: g c G} generates Fpf, for which 
some preliminaries are needed. 

Recall that OL is a free 2-module. Any basis of this Z-module is called an 
integral basis of L. The localization of Z at a prime p is denoted by Z(p). In other 
words, Z(p) = (2 \ pZ)-12. The localization of the 2-module OL at p is then 
OL,p = 2(p) L Obviously, OL,p is a ring, and any integral basis of L forms a basis 
of this free Z(p)-module. 
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Definition 3.1. An integral element a c L is called normal p-integral if it is normal 
and if OL,p = gEGZ(p)a9; a is called normal integral if it is normal p-integral for 
all primes p, i.e., OL = 

gEGZa 

Let p be a prime ideal of OL of residue class degree f. Our first aim is to show 
that the set {a-9 mod p: g E G} generates Fpf as an Fp-vector space if a is normal 
p-integral. For the following remark, note that if I is any ideal of OL, then IOL,p 

is an ideal of OL,p. 

Remark 3.2. We have a canonical isomorphism OL,p/POL,p - OL/P of rings, for 
any prime ideal p of OL- 

Proof. Let po: OL/P -> OL,p/POL,p be the map sending r + p to r + POL,p. The 
map is well defined, as p C P(OL,p. To show surjectivity, let r E OL,p. Then there is 
an integer N prime to p such that r = r'/N, for some r' C OL. Let s be an integer 
congruent to 1/N modulo p. Then ,o(sr') = r + POL,p, and we are done. D 

Remark 3.2 and the fact that z mod p lies in Fp for all z c Z immediately imply 
the following. 

Corollary 3.3. If a is a normal p-integral element of L, then {cag mod p: g c G} 
generates the residue class field of p over Fp. 

Normal p-integral elements can be characterized in an alternative way. 

Proposition 3.4. An element a c L is normal p-integral if and only if it is in- 
tegral, normal, and for any integral basis (y1,... ,yn) of L there exist ai,g c (p) 
such that -yi = ZEG aE,9a9 for all i. 

Proof. We only need to prove the "if" part. Integrality and normality of a imply 
that (0 Z(p)a9 C OL,p = O0 2(p)yi. The other assumption implies that OL,p C 

0 Z(p)a9, and we are done. E 

The Galois group G of L over Q contains an element q = qp such that q(x)- 
xP mod p for all x c CL. It is uniquely determined if p is unramified. Changing 
from p to another prime divisor of p results in conjugation of q by an element of 
G. Hence, if G is Abelian (which will be the case in our application), then q only 
depends on p, and we call it the global Frobenius automorphism of p. There is an 
epimorphism from G to the Galois group of Fpf /Fp, which maps q to the Frobenius 
automorphism of the finite field extension. As a result, p is inert if and only if G 
is cyclic (and hence is generated by 0), in which case the sets {c 9 mod p: g E -G} 
and {(a mod P)p: k = 0,. . . , f - 1} coincide. So, we obtain the following result. 

Proposition 3.5. Let a be a normal p-integral element of the Abelian Galois ex- 
tension L of Q in which p is inert. Then the reduction -a of a modulo the prime 
ideal POL Of OL is a normal element Of Fpn over Fp, where n = [L: Q]. 

In our applications we will obtain normal p-integral elements of L as the trace 
over L of normal p-integral elements of an extension K of L. The following result 
shows that these traces are normal p-integral in L. 

Proposition 3.6. Suppose that a is a normal p-integral element of the Galois 
number field K, and that L is a subfield of K which is Galois over Q. Then the 
trace of a over L is a normal p-integral element of L. 
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Proof. The relevant rings are: 

OK _C OK, p C K 
I I |H 

OL C OL,p C L 
I CG/H 

2 C C Q 

Since the trace : of a over L is the sum of certain conjugates of a and a is normal 
in K over Q, it follows that the conjugates of f are linearly independent over ?, 
and hence that : is normal in L over Q. It remains to show that the conjugates of 3 
under the Galois group of L over Q form a basis of the Z(p)-module (L,p. We first 
show that OL,p is the intersection of OK,p and L: notice that OL = OK n L; hence 
OL,p C OK,p n L. Conversely, let a = , aityi c OK,p, where -yi, . ., -yn form an 
integral basis of K, and ai c Z(p). Then a a'/N for some integer N coprime to 
p and some a' (9K. a c L implies that a' EL; hence a' c OL, which shows that 
a = aI'/N CL,p. Thus, OL,p = OK,p n L, and it suffices to show that any element 
in OK,p which is invariant under H := Gal(K/L) is a Z(p)-linear combination of p9, 

where g runs over a complete set of representatives of the cosets of G = Gal(K/Q) 
modulo H. Any element of OK,p can be represented as a =ZgeG a9g9 for some 
a9 C Z(p). For any T c G we have that at = 

E a9T-1 a9. As a result, a is invariant 
under H if and only if a9 is constant on cosets of H, i.e., if and only if a is a 
Z(p)-linear combination of 39, where 9 runs over a complete set of representatives 
of G modulo H. E 

Theorem 3.7 is the main theorem of this section. Section 4 will contain applica- 
tions of this result in the case of cyclotomic fields. 

Theorem 3.7. Let K D L D Q be Abelian Galois extensions of Q, a be a normal p- 
integral element of K over Q, and p be a prime with global Frobenius automorphism 
q c Gal(K/Q). If (q, Gal(K/L)) = Gal(K/Q), then p is inert in L, and the 
reduction /3 of the trace /3 of a over L modulo the prime ideal POL of L is a normal 
element in Fpn where n = [L: (Q]. 

Proof. By Propositions 3.5 and 3.6 we know that if p is inert in L, then : has the 
required property. Thus, we only need to show that the group theoretic criterion 
stated above implies that p is inert in L. This happens if and only if the Frobenius 
automorphism q' of p in L generates the Galois group of L over Q. But ' = OIL, 
and its image in the isomorphic copy Gal(K/Q)/ Gal(K/L) of Gal(L/Q) equals 
qGal(K/L). Hence, p is inert if and only if (qGal(K/L)) = Gal(L/Q). A simple 
manipulation yields the result. D 

Our main application of the previous theorem is to the case where K is a cyclo- 
tomic field. Let K = Q((), where ( is a primitive rth root of unity. The Galois 
group of K over Q is canonically isomorphic to Zx, where the isomorphism sends 
the residue class of c modulo r to the automorphism mapping ( to (C. A prime p 
is unramified in K if and only if p does not divide r. In that case the Frobenius 
automorphism q of p is given by q: ( -* (P, which corresponds to the residue class 
of p modulo r in Z4. Hence we have the following result. 

Corollary 3.8. Let r c N be positive, ( be a primitive rth root of unity over Q, 
K = Q((), and a be a normal p-integral element in K for some prime p not 
dividing r. Let L be a subfield of K and H = Gal(K/L). If (p, H) = Z', then the 
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ideal POL Of OL is prime and the reduction 3 of the trace 3 of a over L modulo 
POL is a normal element of Fpn over Fp, where n = [L: ?Q]. 

4. NORMAL p-INTEGRAL ELEMENTS IN CYCLOTOMIC FIELDS 

In this section we exhibit explicit normal p-integral elements in a cyclotomic field 
generated by a primitive rth root of unity. We call r the conductor of the field in 
the sequel. Reductions of these elements give normal elements in finite extensions 
of Fp via an application of Corollary 3.8. 

In a first step we show how to construct normal p-integral elements in the com- 
positum of two linearly disjoint number fields. We will need the following result, a 
proof of which can be found in [6]. 

Fact 4.1. Let K and L be two linearly disjoint number fields over Q whose discrim- 
inants are relatively prime. Then the ring of integers OKL of KL equals OKOL 

Proposition 4.2. Suppose that L and K are linearly disjoint Galois number fields, 
and that a and 4 are normal p-integral elements of L and K, respectively, for some 
prime p E N. Then c3 is a normal p-integral element of KL. If a and 4 are 
normal integral, then so is a/3. 

Proof. The Galois group of KL over Q is canonically isomorphic to the direct 
product of the Galois groups of K and L over Q, and hence ao/ is a normal element 
of KL. To prove p-integrality, it is sufficient to show that a/3 is integral, and 
that any integral basis of KL can be represented by Z(p)-linear combinations of 
conjugates of ao/, see Proposition 3.4. Let (b1, ... , b,) and (cl,... , ct) be integral 
bases of L and K, respectively, and let A and B be the transformation matrices 
from the normal bases induced by a and 3 to these integral bases. By Fact 4.1 the 
basis D := (bicj: i, j) is an integral basis of KL, which, in particular, shows that 
ao/ is integral. A simple calculation shows that the transformation matrix from the 
normal basis induced by ao/ to D is the Kronecker product A 0 B, and hence has 
coefficients in Z(p). If A and B have coefficients in Z, then so does A 0 B. C] 

Two cyclotomic fields are linearly disjoint over ?Q if and only if their conductors 
are relatively prime. Since the primes dividing the discriminant of a cyclotomic 
field always divide the conductor, we see that two such fields with relatively prime 
conductors are linearly disjoint and have relatively prime discriminants. Thus, in 
view of the last proposition we only need to find normal p-integral elements in cy- 
clotomic fields with a prime power conductor. This will be done in Proposition 4.4, 
for which we need an auxiliary result. 

Lemma 4.3. Let ? be a prime, t and s be nonnegative integers with s < t, ( be 
a primitive Ct-th root of unity, and r7 be a primitive CS-th root of unityt. Then the 
trace of C in Q(77) is zero if t 7& 1 and is-1 if t = 1. 

Proof. Suppose first that s > 1. Then the trace T(() of ( equals E (C, where c runs 
over all integers between 1 and ?t - 1 such that c -1 mod Es, since Gal(Q(()/Q(7)) 
is isomorphic to the group formed by these c's. Each such c is of the form kC5 + 1, 
with k running from 0 to t` - 1. Hence, 

T(() = ( E o= 
O<k<ft-s 

since (tis a primitive Et`-th root of unity. 
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Suppose now that s = O. If t > 1, then the trace of ( over the field generated by 
a primitive ?th root of unity is zero. (Choose s = 1 in the previous argument.) As 
a result, the absolute trace of ( is zero as well. If t = 1, then it is straightforward 
to check that the trace of ( equals -1. C 

Proposition 4.4. Let f be a prime, t be a positive integer, and ( be a primitive 
Ct-th root of unity. The element 

+ + 
I 

. +&t 

is a normal p-integral element of Q(() for any prime p t ?. If t = 1, then this 
element equals ( and is a normal integral element of Q((). 

Proof. Let -y denote the element in question. It suffices to represent 1 and all (t as 
Z(p)-linear combinations of conjugates of -y. In fact, taking Galois-conjugates this 
implies that all powers of ( are Z(p)-linear combinations of conjugates of 'y, and we 
can apply Proposition 3.4. (Note that any power of ( is a Galois-conjugate of ( 

for some i.) 
For c E Z' we write -yc for the image of ay under the automorphism corresponding 

to c. Furthermore, E' denotes a sum in which the summation index is supposed 
to be relatively prime to ? and to lie between 1 and Ct - 1. Let us first compute 

E' y: by Lemma 4.3, for 0 < k < t - 1, the sum Ec (i c vanishes, since it is a 
multiple of the absolute trace of an Ct-k-th root of unity. If k = t - 1, then this sum 
is ?t` times the trace of a primitive t-th root of unity regarded as an element of 
Q((), hence equals _-`. Thus, 1 =- ' -yC/ltl is representable as a Z(p)-linear 
combination of conjugates of -y. 

Now consider E'1modyc {. By Lemma 4.3 we have L(kmod. ci= 0 if k 7 
t - 1. If k = t - 1, then this sum simply equals - which shows that 
(ft1 is representable as a linear combination of conjugates of ay with coefficients 
0 and 1/Et-1. Considering the sums Ec-lmodef- -yc with s = 1,... , t-l1 the same 
reasoning shows that (its is representable as a linear combination of conjugates of 
-y with coefficients in Z(p). 

If t = 1, then tl = 1, and -y = ( is in fact normal integral. C 

Combining the last two propositions we obtain the following result. 

Theorem 4.5. Let r = r1r2 be a positive integer with squarefree part r1, and let ( 

be a primitive rth root of unity. Then the element 

;r2 
S ; 

?1r2 1<i<ve(r2) 

is a normal p-integral element of Q(C) for any prime p such that p2 does not divide 
r. It is normal integral if r is squarefree. 

Proof. In the following, ? is a parameter ranging over the prime numbers. The 
integer u = Eerr rl /7 is a unit modulo rl. Let v be a positive integer such that 

uv =1 mod rl. If ?Jri, then (r/f is a primitive ?th root of unity, and normal 
integral by Proposition 4.4. The same is true for (rv/f. Applying Proposition 4.2 
repeatedly, and noting that two cyclotomic fields with relatively prime conductors 
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are linearly disjoint, we find that 

J ( rv/f = (r2Uv = (r2 

?jrl 

is normal integral in Q((r2). 

Now, if ?Jr2, then E1<i<ve(r) is normal p-integral in Q (re ve(r)) for any 

p #= ?. Hence, it is normal p-integral for any prime p such that p2 does not divide 
r. Applying Proposition 4.2 again, we obtain the assertion. LIi 

Example 4.6. Suppose that ( E C is a primitive 180th root of unity. Then 

(36(((45 + (90O)((20 + (60) 

is a normal p-integral element of Q(() for any p 7& 2,3. 

We close this section by remarking that we cannot expect to obtain normal 
integral elements in cyclotomic fields whose conductors differ from their squarefree 
parts. The reason for this is that there exist primes p with wild ramification in 
these fields. By a theorem of E. Noether [9] there do not exist normal integral 
elements in any p-adic completion of these fields, where p is a prime divisor of p. 
More generally, Abelian number fields with conductors that are not squarefree do 
not possess normal integral elements for the same reason. 

5. NORMAL MODULAR GAUSS PERIODS 

Proof of the Main Theorem. Let r7 denote the element EaEK 9ypa). Since the con- 
dition (q, IC) = Z' is necessary for r7 to be a normal element in Fqn by Lemma 2.4, 
we only need to show the sufficiency of this condition. In case q = p is a prime, 
the assertion follows immediately from Corollary 3.8 and Theorem 4.5. Suppose 
now that q = pm and that (q, K) = Z4<. The order of q mod K equals b/ gcd(b, in), 

where b is the order of p mod /C. Hence, (q, IC) = Z' implies that gcd(b, m) = 1, 
and b = n. So (p, K) = Zx, which implies that r1 is a normal element of Fp71 by the 
first part of this proof. As gcd(m, n) = 1, the fields ?pn and Fq are linearly disjoint 
over Fp. As a result, the conjugates of r1 are linearly independent over Fq since they 
are linearly independent over Fp, which shows that r7 is normal over Fq. C 

The Main Theorem shows that a squarefree Gauss period of type (n, IC) is always 
normal in Fqn over Fq if (q, K) = Z4x. 

Can we expect an element of the form EaECK pa to be normal even if r is not 
squarefree? 

The answer is no, and the reason is as follows: if r is not squarefree, then the 
trace of such an element over Fq is zero. In particular, the conjugates of this period 
are not linearly independent. To prove this, we use a detour via cyclotomic fields. 
Recall the M6bius function ,t defined by ,u(l) = 1, [t(n) = 0 if n is not squarefree, 
and [t(n) = (-I)t if n is squarefree and has exactly t prime divisors. 

Lemma 5.1. The trace in Q of a primitive rth root of unity equals p(r). 

Proof. Let ( be a primitive rth root of unity, G = Zrx the Galois group of K = Q(() 
over Q, so that f(r) = ZcECG ( is the trace of (. Then g(r) = Edlr f(d) is the sum 
over all dth roots of unity, which is 1 if r = 1 and 0 otherwise. Mobius inversion 
yields f(r) = p(r). ] 
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This result together with the Main Theorem and Lemma 2.4 implies the follow- 
ing. 

Theorem 5.2. With the above notation, a Gauss period of the form ae = LaCK Oa 

is a normal element of JFqn over Fq if and only if (q, KI) = Z and r is squarefree. 

6. SOME EXPERIMENTS 

As in the case of prime Gauss periods, we want to determine for given n and 
q the lowest value for k such that a normal Gauss period of type (n, K), where 
#K = k, exists over Fq: 

Definition 6.1. A pair (n, IC) is called a (squarefree) Gauss pair if and only if 
the (squarefree) Gauss period of type (n, IC) is a normal element in Fqn over Fq; 
"squarefree" means that r is squarefree. We define 

min k (n, IC) is a squarefree Gauss pair with #/C = k, 
Ks(q, n) = if such a IC exists, 

00 x if no such IC exists, 

f min k (n, C) is a Gauss pair with #K = k, 
K, (q,n) = if such a C exists, 

00 if no such IC exists. 

The subscripts s and g stand for "squarefree" and "general", respectively. Obvi- 
ously, we have ig (q, n) < i,(q, n) < /p(q, n) for all q and n, see Definition 1.1. We 
now will see that sometimes ,g (q, n) < /p(q, n). 

Example 6.2. Let q = 2 and n = 20. Then np(2,20) = 3 > n,(2120) = 2 > 

Kg (2, 20) = 1. Namely, for the squarefree Gauss period we take r = 55, and the 
three subgroups from Example 2.2. Now 210 34 mod 55 and 342 1 mod 55, 2 
generates a subgroup of order 20, and (2, IC) = (2, K2) = Z x but (2, K3) = (2) + 

255. Thus we have normal elements of type (20, IC,) and (20, /C2) of F220 over F2. 

In particular, ,(2, 20) < 2, and equality holds, since 2 is not primitive modulo 21, 
and hence i, (2, 20) $ 1. 

For the general Gauss period we consider r = 25, which is coprime to 2. Then 
X(r) = 20 and with n = 20 and k = 1 we have found a normal Gauss period of type 
(20, {1}). Hence, ig (2,20) = 1. 

More examples for q = 2 are exhibited in Table 2. The D in all tables indicates 
that the corresponding r is not squarefree. Tables for prime GauB3 periods are in 
[81,[1], and [4]. 

Gauss periods also yield normal bases in situations where /p(q, n) = oo. Table 
1 shows all such values for which q E {3, 5, 7, 11} and 2 < n < 100. More generally, 
Gao [2] has shown that the values where n,(q, n) < oo are exactly the following: 

(i) gcd(m, n) = 1, where q = pm and p = char(IFq) $7 2, 
(ii) 8 t n for char(IFq) = 2. 
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So, compared to Fact 1.2, we have n, (q, n) < oo for q $7 2 in many more cases 
than in the prime case. Unfortunately, no such improvement occurs in characteristic 
2. 

Tables 3 and 4 show the improvements for q = 3 and q = 5, respectively. For 
q = 2, we have 96 values of n between 2 and 400 with ig9(q, n) < /p(q, n). For q = 3, 
there are 126, and for q = 5 there are 120 such values, i.e., more than 25% which 
yield a better result. The largest improvement we found is fnP(5,272)/ing(5, 272) = 
23. 

The (geometric) average improvement ratio for 2 < n < 400 is 1.49 for q = 

2 (including the cases where np(q,n)=n9(q,n)), while for q = 3 and q = 5 the 
(geometric) average ratios are 1.44 and 1.45, respectively. In the latter two cases 
we only consider values of n for which /p(q, n) < o0. 
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TABLE 1. Gauss periods for q E {3,5,7,11} and 2 < n < 100 with tp(q, n) = oo 

q n r n9 (q, n) |Z 
3 12 35 2 {1,6} 
3 24 119 4 {1, 50, 69, 118} 
3 36 95 2 {1,56} 
3 48 119 2 {1, 69} 
3 60 155 2 {1, 61} 
3 72 323 4 {1, 18,305,322} 
3 84 203 2 {1, 146} 
3 96 896 O 4 {1, 321,575,895} 
5 10 33 2 {1,10} 
5 20 176 O 4 {1,23,65,87} 
5 30 77 2 {1,76} 
5 40 187 4 {1, 67,120,186} 
5 50 303 4 {1, 10, 91, 100} 
5 60 407 6 {1, 100,175,232,307,406} 
5 70 473 6 {1, 122,221,252,351,472} 
5 80 187 2 {1, 120} 
5 90 297 O 2 {1,109} 
5 100 1616 O 8 {1, 111,313,495,697,807,1009,1415} 
7 28 145 4 {1, 12,133,144} 
7 56 493 8 {1, 86, 186, 220, 273, 307, 407, 492} 
7 84 377 4 {1, 12,144,220} 

11 44 368 O 4 {1, 137,47,183} 
11 88 391 4 {1, 183,254,344} 
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TABLE 2. Improvements for q = 2 and 2 < n < 400 

n ip (2, n) ig (2, n) ratio | r 1C 
6 2 1 2.0 9 W {1} 

20 3 1 3.0 25 E {1} 
21 10 2 5.0 49 W {1, 48} 
22 3 2 1.5 69 {1, 68} 
27 6 2 3.0 81 W {1, 80} 
34 9 6 1.5 309 {1, 46, 47, 262, 263, 308} 
42 5 2 2.5 147 W {1, 146} 
44 9 2 4.5 115 {1,91} 
46 3 2 1.5 141 {1, 140} 
54 3 1 3.0 81 W {1} 
55 12 2 6.0 121 W {1, 120} 
57 10 6 1.67 361 o {1, 68, 69, 292, 293, 360} 
68 9 6 1.5 515 W {1, 46, 56, 356, 366, 411} 
70 3 2 1.5 213 {1, 212} 
75 10 8 1.25 707 {1, 111, 293, 302, 405, 414, 596, 706} 
78 7 2 3.5 169 {1, 168} 
84 5 2 2.5 203 {1, 202} 
92 3 2 1.5 235 {1, 46} 

102 6 2 3.0 309 {1, 308} 
108 5 2 2.5 405 W {1, 404} 
110 6 1 6.0 121 W {1} 
111 20 8 2.5 1043 {1, 148, 342, 491, 552, 701, 895, 1042} 
114 5 3 1.67 361 W {1, 68, 292} 
116 3 2 1.5 295 {1, 176} 
123 10 4 2.5 581 {1, 167, 414, 580} 
125 6 4 1.5 625 W {1, 182, 443, 624} 
132 5 2 2.5 299 {1, 298} 
140 3 2 1.5 319 {1, 318} 
145 10 4 2.5 649 {1, 296, 353, 648} 
147 6 2 3.0 343 W {1, 342} 
150 19 4 4.75 707 {1, 302, 405, 706} 
154 25 4 6.25 667 {1, 231, 505, 597} 
156 13 1 13.0 169 W {1} 
159 22 4 5.5 749 {1, 106, 643, 748} 
164 5 2 2.5 415 {1, 414} 
166 3 2 1.5 501 {1, 500} 
171 12 2 6.0 361 W {1, 360} 
190 10 2 5.0 573 {1, 190} 
195 6 4 1.5 869 {1, 78, 791, 868} 
198 22 2 11.0 437 {1, 436} 
203 12 4 3.0 841 W {1, 41, 800, 840} 
204 3 2 1.5 515 {1, 411} 
212 5 2 2.5 535 {1, 534} 
220 3 2 1.5 575 W {1, 551} 
222 10 4 2.5 1043 {1, 148, 342, 552} 
225 22 8 2.75 1919 {1, 495, 607, 818, 1101, 1312, 1424, 

1918} 
228 9 6 1.5 1603 {1, 134, 323, 1280, 1469, 1602} 
234 5 4 1.25 1007 {1, 476, 531, 1006} 
237 10 8 1.25 2219 {1, 316, 748, 1065, 1154, 1471, 1903, 

2218} 
238 7 2 3.5 717 {1, 716} 
242 6 5 1.2 1331 W {1, 124, 632, 735, 1170} 
246 11 2 5.5 581 {1, 580} 
249 8 4 2.0 1169 { 1, 335, 834, 1168} 
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Table 2. (Continued) 

n ,p (2, n) ig (2, n) ratio Ir AZ 
250 9 2 4.5 625 D {1, 624} 
252 3 2 1.5 551 {1, 436} 
253 10 2 5.0 529 D {1, 528} 
255 6 4 1.5 1133 {1, 516, 617, 1132} 
258 5 4 1.25 1211 {1, 174, 1037, 1210} 
260 5 2 2.5 583 {1, 54} 
262 3 2 1.5 789 {1, 262} 
267 8 4 2.0 1253 {1, 538, 715, 1252} 
274 9 6 1.5 2469 {1, 997, 998, 1471, 1472, 2468} 
275 14 8 1.75 2323 {1, 91, 919, 1011, 1312, 1404, 2232, 

2322} 
276 3 2 1.5 611 {1, 610} 
285 10 4 2.5 1337 {1, 190, 1147, 1336} 
290 5 2 2.5 649 {1, 296} 
294 3 2 1.5 1029 D {1, 685} 
297 6 4 1.5 1863 D {1, 323, 1540, 1862} 
300 19 2 9.5 707 {1, 405} 
301 10 6 1.67 1849 D {1, 423, 424, 1425, 1426, 1848} 
308 15 2 7.5 667 {1, 436} 
310 6 2 3.0 933 {1, 932} 
315 8 4 2.0 1349 {1, 569, 780, 1348} 
318 11 2 5.5 749 {1, 643} 
322 6 4 1.5 1363 {1, 46, 563, 753} 
324 5 2 2.5 815 {1, 651} 
332 3 2 1.5 835 {1, 834} 
333 24 4 6.0 1369 D {1, 117, 1252, 1368} 
335 12 8 1.5 2959 {1, 351, 725, 1077, 1882, 2234, 2608, 

2958} 
339 8 4 2.0 1589 {1, 680, 909, 1588} 
342 6 1 6.0 361 D {1} 
351 10 8 1.25 4293 D {1, 242, 1295, 1538, 2755, 2998, 4051, 

4292} 
356 3 2 1.5 895 {1, 536} 
357 10 4 2.5 1673 {1, 477, 1196, 1672} 
358 10 2 5.0 1077 {1, 358} 
361 30 18 1.67 6859 D {1, 333, 623, 956, 1145, 1689, 2819, 

2820, 2834, 4025, 4039, 4040, 5170, 
5714, 5903, 6236, 6526, 6858} 

365 24 8 3.0 3223 {1, 155, 1310, 1464, 1759, 1913, 3068, 
3222} 

366 22 2 11.0 1101 {1, 733} 
369 10 4 2.5 1577 {1, 248, 1329, 1576} 
370 6 4 1.5 1639 {1, 595, 1044, 1638} 
377 14 8 1.75 3127 {1, 235 , 825, 1061, 2066, 2302, 2892, 

3126} 
380 5 2 2.5 955 {1, 381} 
382 6 2 3.0 1149 {1, 382} 
385 6 4 1.5 1633 {1, 70, 1563, 1632} 
390 3 2 1.5 869 {1, 868} 
396 11 2 5.5 851 {1, 850} 
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TABLE 3. Improvements for q = 3 and 2 < n < 400 

n $p (3, n) g (3, n) ratio r K 
2 2 1 2.0 4 W {1} 

10 3 2 1.5 25 W {1, 24} 
12 oo 2 35 {1, 6} 
20 5 1 5.0 25 W {1} 
22 3 2 1.5 92 W {1, 91} 
24 oo 4 119 {1, 50, 69, 118} 
32 8 2 4.0 128 W {1, 127} 
33 6 4 1.5 161 {1, 22, 139, 160} 
36 oo 2 95 {1, 56} 
38 15 9 1.67 361 W: {1, 28, 54, 62, 68, 99, 234, 245, 292} 
40 7 4 1.75 187 {1, 21, 67, 98} 
46 3 2 1.5 188 {1, 187} 
48 oo 2 119 W {1, 69} 
55 6 4 1.5 253 {1, 45, 208, 252} 
58 4 2 2.0 236 W {1, 235} 
60 oo 2 155 {1, 61} 
62 21 10 2.1 1244 W: {1, 305, 317, 621, 717, 881, 897, 969, 

985, 1149} 
64 4 2 2.0 256 W {1, 127} 
66 3 2 1.5 161 {1, 22} 
70 3 2 1.5 284 W {1, 283} 
72 oo 4 323 {1, 132, 208, 305} 
80 5 2 2.5 187 {1, 186} 
82 9 2 4.5 332 W {1, 165} 
84 oo 2 203 {1, 202} 
85 16 12 1.33 1133 {1, 56, 252, 263, 516, 562, 571, 617, 

870, 881, 1077, 1132} 
90 7 2 3.5 209 {1, 208} 
92 5 2 2.5 235 {1, 46} 
96 oo 4 896 W: {1, 321, 575, 895} 

102 11 6 1.83 721 {1, 57, 253, 365, 561, 617} 
106 10 2 5.0 428 W: {1, 427} 
108 oo 4 545 {1, 76, 251, 326} 
114 5 3 1.67 361 W: {1, 68, 292} 
120 oo 4 527 {1, 30, 123, 373} 
123 6 4 1.5 581 {1, 167, 414, 580} 
124 13 10 1.3 1555 {1, 6, 36, 216, 259, 1296, 1339, 1519, 

1549, 1554} 
130 4 2 2.0 524 W {1, 261} 
132 oo 4 623 {1, 90, 533, 622} 
144 oo 2 323 {1, 18} 
145 10 4 2.5 649 {1, 296, 353, 648} 
147 10 2 5.0 343 W: {1, 342} 
150 5 4 1.25 707 {1, 302, 405, 706} 
153 14 12 1.17 1957 {1, 514, 562, 767, 768, 881, 1076, 1189, 

1190, 1395, 1443, 1956} 
156 oo 2 371 {1, 370} 
159 34 4 8.5 749 {1, 106, 643, 748} 
164 5 2 2.5 415 {1, 414} 
166 3 2 1.5 668 W: {1, 667} 
168 oc 4 731 {1, 429, 472, 560} 
170 8 6 1.33 1133 {1, 56, 263, 870, 1077, 1132} 
171 12 2 6.0 361 W: {1, 360} 
174 9 2 4.5 413 {1, 176} 
178 15 2 7.5 716 W: {1, 357} 
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Table 3. (Continued) 

n np(3,n) ng(3,n) ratio r K 

180 oo 2 475 W {1,151} 
182 14 8 1.75 1537 {1, 423, 476, 637, 900, 1061, 1114, 

1536} 
184 7 4 1.75 799 {1,140,234,424} 
186 15 4 3.75 1492 0 {1, 745,1015,1223} 
190 3 2 1.5 764 0 {1, 381} 
192 oo 4 1792 0 {1, 769,1023,1791} 
195 10 4 2.5 869 {1, 78,791,868} 
201 10 8 1.25 1883 {1, 351, 456, 806, 1077, 1427, 1532, 

1882} 
203 12 4 3.0 841 0 {, 411, 800, 840} 
204 oo 4 959 {1,174,237,547} 
208 10 4 2.5 901 {1, 30, 871, 900} 
212 5 2 2.5 535 {1,534} 
216 oo 8 1853 {1, 76, 217, 621, 764, 871, 1341, 1668} 
218 15 10 1.5 4364 0 {1, 93, 305, 801, 1381, 1877, 2089, 

2181,2261,4285} 
220 4 2 2.0 575 o {1, 551} 
226 15 2 7.5 908 0 {1, 907} 
228 oo 4 1145 {1, 336, 351,686} 
234 5 4 1.25 1007 {1, 476, 531,1006} 
238 4 2 2.0 956 0 {1, 477} 
240 oo 2 527 {1, 526} 
245 24 8 3.0 2167 {1, 395, 408, 802, 1365, 1759, 1772, 

2166} 
246 3 2 1.5 581 {1,580} 
249 8 4 2.0 1169 {1, 335, 834,1168} 
250 3 2 1.5 625 0 {1, 624} 
252 oo 2 551 {1, 436} 
253 4 2 2.0 529 0 {1, 528} 
258 5 4 1.25 1211 {1, 253, 785,1037} 
261 6 4 1.5 1121 {1, 58,, 1063 1120} 
262 3 2 1.5 1052 0 {1, 1051} 
264 oo 2 623 {1, 622} 
272 5 1 5.0 289 0 {1} 
273 10 8 1.25 2279 {1, 560, 818, 902, 1377, 1461, 1719, 

2278} 
275 12 8 1.5 2323 {1, 91, 919, 1011, 1312, 1404, 2232, 

2322} 
276 oo 2 695 {1,694} 
288 oo 4 2432 0 {1, 191,2241,2431} 
290 20 4 5.0 1475 0 {1, 707, 943,1299} 
294 5 1 5.0 343 0 {1} 
300 oo 2 707 {1,405} 
301 10 6 1.67 1849 0 {1, 423, 424,1425,1426,1848} 
306 7 6 1.17 1957 {1, 767, 1076,1189,1395,1443} 
310 15 2 7.5 1244 0 {1, 621} 
312 oo 4 1343 {1, 475, 868,1342} 
314 14 10 1.4 6284 0 {1, 621, 825, 1189, 1953, 2317, 2521, 

3141,3321,6105} 
318 17 2 8.5 749 {1,106} 
321 18 12 1.5 4501 {1, 466, 821, 1108, 1109, 1287, 3214, 

3392,3393,3680,4035,4500} 
324 oc 2 815 {1, 651} 
328 7 4 1.75 1411 {1, 84, 1327, 1410} 
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Table 3. (Continued) 

n sp (3, n) g (3, n) ratio r K 
332 8 2 4.0 835 {1, 834} 
333 6 4 1.5 1369 D {1, 117, 1252, 1368} 
334 15 14 1.07 9356 D {1, 357, 1065, 2149, 2529, 3613, 4321, 

4677, 5693, 5821, 5965, 8069, 8213, 
8341} 

336 oo 2 731 {1, 171} 
339 10 4 2.5 1589 {1, 680,909,1588} 
342 13 1 13.0 361 D {1} 
346 3 2 1.5 1388 D {1, 1387} 
348 oo 4 1631 {1, 232,1399,1630} 
351 22 16 1.37 5777 {1, 76, 796, 871, 1854, 2256, 2649, 

2726, 3051, 3128, 3521, 3923, 4906, 
4981,5701,5776} 

356 11 2 5.5 895 {1,536} 
358 4 2 2.0 1436 D {1, 717} 
360 oo 8 3077 {1,19,162,361,705,1087,1628,2191} 
361 30 18 1.67 6859 D {1, 333, 623, 956, 1145, 1689, 2819, 

2820, 2834, 4025, 4039, 4040, 5170, 
5714,5903,6236,6526,6858} 

364 7 4 1.75 1537 {1, 637, 1061, 1114} 
365 18 8 2.25 3223 {1, 155, 1310, 1464, 1759, 1913, 3068, 

3222} 
366 5 4 1.25 2932 D {1, 1465, 1819, 2579} 
368 11 2 5.5 799 {1, 798} 
372 oo 4 1865 {1,477,1388,1864} 
377 14 8 1.75 3127 {1, 235, 825, 1061, 2066, 2302, 2892, 

3126} 
380 5 2 2.5 955 {1, 381} 
381 20 8 2.5 3563 {1, 510, 1226, 1735, 1828, 2337, 3053, 

3562} 
382 10 2 5.0 1532 D {1, 765} 
384 oo 4 1799 {1, 755, 1301, 1541} 
385 6 4 1.5 1633 {1, 70, 1563, 1632} 
387 14 8 1.75 3287 {1, 172, 1291, 1464, 1823, 1996, 3115, 

3286} 
390 5 2 2.5 869 {1,868} 
393 10 4 2.5 1841 {1, 790, 1051, 1840} 
396 oo 2 995 {1,994} 
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TABLE 4. Improvements for q = 5 and 2 < n < 400 

n $p(5,n) 9g(5,rn) ratio r K 
4 3 2 1.5 16 c: {1, 15} 

10 oo 2 33 {1, 32} 
18 2 1 2.0 27 c {1} 
20 oo 4 176 c: {1, 23, 65, 87} 
27 4 2 2.0 81 c {1, 80} 
30 oo 2 77 {1, 76} 
32 3 2 1.5 128 W {1, 127} 
33 10 4 2.5 161 {1, 22, 139, 160} 
38 12 10 1.2 573 {1, 49, 109, 152, 184, 389, 421, 464, 

524, 572} 
40 oo 4 187 {1, 21, 67, 98} 
44 8 4 2.0 368 {1, 47, 137, 183} 
45 12 4 3.0 209 {1, 56, 153, 208} 
50 oo 4 303 {1, 10, 91, 100} 
54 8 1 8.0 81 W {1} 
55 6 2 3.0 121 W {1, 120} 
58 4 2 2.0 177 {1, 176} 
60 oo 6 407 {1, 100, 175, 232, 307, 406} 
63 12 8 1.5 551 {1, 75, 115, 191, 360, 436, 476, 550} 
64 3 2 1.5 256 W {1, 127} 
66 6 2 3.0 161 {1, 139} 
70 oo 6 473 {1, 122, 221, 252, 351, 472} 
80 oo 2 187 {1, 186} 
81 10 2 5.0 243 W: {1, 242} 
84 8 4 2.0 688 W: {1, 257, 431, 687} 
90 00 2 297 W: {1, 109} 

100 oo 8 1616 W {1, 111, 313, 495, 697, 807, 1009, 1415} 
104 9 8 1.12 901 {1, 30, 52, 242, 659, 849, 871, 900} 
110 oo 2 253 {1, 208} 
114 13 4 3.25 687 {1, 457, 565, 580} 
120 oo 6 803 {1, 65, 210, 593, 738, 802} 
123 10 4 2.5 581 {1, 167, 414, 580} 
126 6 4 1.5 783 W: {1, 28, 244, 568} 
130 oo 2 393 {1, 392} 
134 14 4 3.5 807 {1, 268, 620, 725} 
140 oo 8 1243 {1, 131, 208, 747, 835, 903, 1002, 1145} 
144 3 2 1.5 323 {1, 18} 
145 10 4 2.5 649 {1, 296, 353, 648} 
147 10 2 5.0 343 W: {1, 342} 
150 oo 2 453 {1, 452} 
159 20 4 5.0 749 {1, 106, 643, 748} 
160 oo 4 1408 W: {1, 65, 1343, 1407} 
162 11 1 11.0 243 W {1} 
164 14 4 3.5 1328 W: {1, 663, 831, 1161} 
170 oo 6 1133 {1, 56, 263, 870, 1077, 1132} 
171 12 2 6.0 361 W: {1, 360} 
174 3 2 1.5 413 {1, 176} 
178 12 2 6.0 537 {1, 536} 
180 oc 2 407 {1, 186} 
183 22 12 1.83 2569 {1, 283, 450, 451, 817, 1100, 1469, 

1752, 2118, 2119, 2286, 2568} 
184 9 4 2.25 799 {1, 140, 234, 424} 
190 oc 6 1713 {1, 109, 110, 1604, 1603, 1712} 
194 8 4 2.0 1167 {1, 388, 893, 1052} 
195 10 4 2.5 869 {1, 78, 791, 868} 
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Table 4. (Continued) 

n sp (5, n) g (5, n) ratio r K 
200 oo 8 1717 {1, 203, 596, 798, 919, 1121, 1514, 

1716} 
201 10 8 1.25 1883 {1, 351, 456, 806, 1077, 1427, 1532, 

1882} 
203 12 4 3.0 841 0 {1, 41, 800, 840} 
207 24 4 6.0 893 {1, 189, 704, 892} 
208 9 4 2.25 901 {1, 30,871,900} 
210 oo 2 473 {1, 87} 
212 8 4 2.0 1712 0 {1, 215, 1497, 1711} 
218 12 10 1.2 3273 {1, 79, 1012, 1090, 1381, 1396, 2089, 

2275,2968,2983} 
220 oo 4 1936 0 {1,727,1209,1935} 
228 9 8 1.12 3664 0 {1, 809, 1375, 1481, 2183, 2289, 2855, 

3663} 
230 oo 2 517 {1,142} 
237 10 8 1.25 2219 {1, 316, 748, 1065, 1154, 1471, 1903, 

2218} 
238 4 2 2.0 717 {1, 716} 
240 oo 4 1037 {1, 72,965,1036} 
243 12 2 6.0 729 0 {1, 728} 
246 22 2 11.0 581 {1, 167} 
250 oo 6 2253 {1, 73,679,823,1429,1501} 
253 4 2 2.0 529 0 {1, 528} 
254 9 4 2.25 1527 {1, 208,301,508} 
259 18 16 1.12 4321 {1, 552, 597, 1148, 1491, 1683, 2042, 

2087, 2234, 2279, 2638, 2830, 3173, 
3724,3769,4320} 

260 oo 2 583 {1,582} 
264 8 6 1.33 1679 {1, 137, 300, 804, 1013, 1103} 
270 oo 2 891 W {1,406} 
272 23 1 23.0 289 0 {1} 
275 14 8 1.75 2323 {1, 91, 919, 1011, 1312, 1404, 2232, 

2322} 
280 oo 4 1243 {1, 98, 241, 903} 
286 7 4 1.75 1219 {1, 507,553,1059} 
290 oo 4 1947 {1, 296,353,1297} 
294 9 1 9.0 343 0 {1} 
297 8 4 2.0 1863 0 {1, 323, 1540,1862} 
300 oo 4 2416 0 {1, 303, 2113,2415} 
301 10 6 1.67 1849 0 {1, 423, 424,1425,1426,1848} 
310 oo 2 933 {1, 932} 
314 14 10 1.4 4713 {1, 382, 1189, 1570, 1750, 2317, 2521, 

3763,3967,4534} 
315 20 12 1.67 4009 {1, 197, 210, 407, 1280, 1281, 2728, 

2729,3602,3799,3812,4008} 
318 17 2 8.5 749 {1,643} 
320 oc 4 2816 0 {1,639,2177,2815} 
321 30 12 2.5 4501 {1, 466, 821, 1108, 1109, 1287, 3214, 

3392,3393,3680,4035,4500} 
324 9 4 2.25 3888 0 {1,487,1457,1943} 
328 7 4 1.75 1411 {1,84,1327,1410} 
330 oc 2 847 {1,846} 
333 6 4 1.5 1369 0 {1, 117, 1252, 1368} 
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Table 4. (Continued) 

n Kp(5,n) 9g(5,rn) ratio r K 
334 24 14 1.71 7017 {1,1015,1052,1196,1274,1982,2149, 

4868, 5035, 5821, 5743, 5965, 6002, 
7016} 

339 8 4 2.0 1589 {1, 680, 909, 1588} 
340 oo 4 1507 {1, 648,958,1407} 
342 6 2 3.0 1083 D {1, 1082} 
348 7 4 1.75 1631 {1, 232,1399,1630} 
350 oo 4 2103 {1, 700,1267,1537} 
351 10 8 1.25 4293 D {1, 242, 1295, 1538, 2755, 2998, 4051, 

4292} 
354 8 4 2.0 2127 {1, 1322, 1417, 1514} 
356 6 4 1.5 2864 D {1, 1431,1791,2505} 
357 6 4 1.5 1673 {1, 477, 1196, 1672,} 
358 4 2 2.0 1077 {1, 358} 
360 oo 2 803 {1, 439} 
361 30 18 1.67 6859 D {1, 333, 623, 956, 1145, 1689, 2819, 

2820, 2834, 4025, 4039, 4040, 5170, 
5714,5903,6236,6526,6858} 

365 18 8 2.25 3223 {1, 155, 1310, 1464, 1759, 1913, 3068, 
3222} 

366 11 6 1.83 2569 {1, 83, 650, 1184, 1469, 1751} 
368 9 2 4.5 799 {1, 798} 
369 10 4 2.5 1577 {1,248,1329,1576} 
370 oo 6 2453 {1,263,485,1968,2190,2452} 
377 14 8 1.75 3127 {1, 235, 825, 1061, 2066, 2302, 2892, 

3126} 
380 oo 12 5027 {1, 133, 780, 1695, 1827, 2419, 2608, 

3200,3332,4247,4894,5026} 
385 10 8 1.25 3509 D {1, 969, 1090, 1451, 2058, 2419, 2540, 

3508} 
387 14 8 1.75 3287 {1, 172, 1291, 1464, 1823, 1996, 3115, 

3286} 
390 oo 2 917 {1,785} 
392 18 8 2.25 3349 {1, 577, 1378, 1393, 1956, 1971, 2772, 

3348} 
400 oc 4 1717 {1, 596, 919, 1514} 
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